

	Radiation	Photons	Visible light
"Base" unit	Energy (J)	Photons (mol)	Luminous intensity (cd)
Flux [total amount received or emitted per time]	Radiant flux (J s ⁻¹) or (W)	Photon flux (µmol s ⁻¹)	Luminous flux (Im)
Flux density [total amount received per area per time]	Radiant flux density (W m ⁻²)	Photon flux (density) (μmol m ⁻² s ⁻¹)	Illuminance, Luminous flux density (lux) or (lm m·²) (fc) or (lm ft²)
Photosynthetic flux density [total amount potentially driving photosynthesis]	PAR (photosynthetically active radiation flux density) (W m ⁻²)	PPF (photosynthetic photon flux (density)) (μmol m ⁻² s ⁻¹)	Not applicable

Daily light integral (DLI or Daily PPF)

- Total amount of photosynthetically active radiation (400-700 nm) received per sq meter per day
- Unit: mole per sq meter per day (mol m⁻² d⁻¹)
- Under optimal conditions, plant growth is highly correlated with DLI.
- DLI = Potential growth
- "1% of light = 1% yield"

Solar radiation

- Intensity measured using two types of sensors
- Quantum sensor
 - Photosynthetic photon flux (PPF, 400-700 nm)
- Radiometer (pyranometer)
 - Actual sensing wavelength range varies depending on the sensor type (280 -2800 nm, 400 – 1100 nm etc.), but is designed to estimate the global solar radiation (300 – 3000 nm) in W m⁻².
 - When pyranometer is used, cumulative radiation level is expressed in MJ $\mbox{m}^{-2}.$

Important keys to evaluate artificial lighting

- Energy conversion efficiency
 - Watt to watt conversion
 - Watt to $\mu mol~s^{\text{-}1}$ conversion (Note: Im/W is useless information for plant lighting)
 - Spectral quality
 - Effective light flux per fixture (μ mol s⁻¹ per fixture)
 - Light distribution
- Plant response

Comparisons of different light sources

Lamps	Input (W)	Light flux (lm)	Effi- ciency (lm/W)	Life (h)	Price (Yen or \$)	Price per lumen (Yen or \$)
Hf-fluorescent lamps* (25.5 mm W x 1198 mm L)	32	3,520	110.0	12,000	1,470 yen	0.42 yen (\$0.005)
LED lamps* (fluorescent lamp type) (25.5 mm W x 1198 mm L)	27.2	2,400	88.2	40,000	16,000 yen	6.67 yen (\$0.083)
HPS (400 W lamp)	440**	44,000***	100	12,000	\$150	\$0.003

- Data after Kozai (2011)
- **Power including ballast

 ***Effective light flux (after reflector loss)

Comparisons of different light sources

Lamps	Efficiency W/W %	Efficiency Photon flux /W (μmol s ⁻¹ W ⁻¹) or (μmol J ⁻¹)
Hf-fluorescent lamps	25-28%	1.5*
LED (red)	22-32%	4.5.4.0**
LED (blue)	22-49%	1.5-1.6**
HPS	20-39%	1.4*
MH	22-30%	

* Estimated from lumens converted to photons by factors reported by Thimijan and Heins (1983)
**Phillips catalogue data for GreenPower LED (Red + Blue)

LEDs in Horticulture

- Increasing interest worldwide
- Challenges
 - High fixture costs
 - Limited information on optimization (light quality, design and application methods)
- Opportunities
 - Maximizing photosynthesis
 - Photomorphology or photoperiodic control
 - New applications

Incandescent Lamps

- 100-year old technology
- Rich in yellow, red, and far-red in addition to thermal radiation.
- · Widely used in horticulture for photoperiodic as well as supplemental photosynthetic lighting.
- The only widely available light source containing far-red radiation.
- Currently horticulture use is exempt from the phase-out, but the limited access may increase the price.

Far-red LEDs

- Current LED market is for visible range (~380 -680 nm), UV and NIR (>800 nm), leaving farred (700 - 800 nm) without much development.
- Far-red (response peak at 735 nm) is a light quality relevant to plant growth/development.
- LED technology enables monochromatic farred lighting.

End-of-day FR Light Treatment for Cucurbit Seedlings Grown under Artificial Lighting Preliminary Experiment Plant species: C. maxima x C. moschata 'Tetsukabuto' Main light source:

Cool White fluorescent lamp PPF: 150 μ mol m⁻² s⁻¹ (400-700 nm) Photoperiod: 12 hours

EOD FR treatment:

Intensity: 4 μmol m⁻² s⁻¹ (700-800 nm) Duration: 30 min EOD for 3 days FR Dose: 7200 $\mu mol\ m^{\text{--}2}\ d^{\text{--}1}$

Supplemental FR Lighting for Baby Leaf Lettuce under Artificial Lighting

- Supplemental far-red light significantly increased the biomass of baby lettuce plants by 28%.
- This was due to the increased light interception caused by enhanced leaf elongation.
- Similar observation by Stutte et al. (2009).

(Li and Kubota, 2009

Natural color LEDs

- · Currently used for museums and retail stores
- · Wavelength similar to sunlight
- Some products have very accurate color representation (Color Rendering Index: 98)
- Possible applications in certain types of plant factories
- · Plasma lamps may have similar advantage.

www.ccs-grp.com

