Performance of Various Salad Crops Grown under Candidate Lighting Technologies

NRA98-HEDs-01-067 Gregory D. Goins

Dynamac Corporation Mail Code: DYN-3 Kennedy Space Center, Florida, USA 32899

Electric Plant Lighting Systems

System Design •Power Requirements •Thermal Exchange/Removal •Mass and Volume •Modularity Source Lamp •Safety •Conversion Efficiency •Spectral Quality •Spectral Distribution •Longevity <u>Crop</u> •Quantum Efficiency •Spectral Absorption •Light Interception •Photoperiod •Light Pollution

Why Salad-Type Crops?

US

Low growth habit with defined shape Adaptable to confined controlled environment cultivation Short life cycle allows multiple harvests in defined time periods Simple post-harvest processing Fresh vegetable source with emplemental minerals, vitamins, and fiber

Light-emitting diodes (LEDs)

- Small mass and volume
- Limited thermal radiation projection to plant canopy
- Plants safely grown in close proximity to arrays
- Particularly suited for space transit vehicles

Sulfur-Microwave Lamp

Good electrical to visible light conversion efficiency
High visible light output for remote "light pipe" applications
Uniform broad-spectrum visible light emission
Output can be dimmed without significant spectral shift

Past experiments with LED lighting at KSC

Wheat grown under Red LEDs alone (no blue light)

- Net positive CER, dry matter, & grain yield decreased
- In leaves during vegetative and pre-anthesis stages
 - sucrose levels decreased
 - Decreased SPS & cytosolic Frc 1,6 Bpase activities
 - starch levels elevated
 - Increased ADP-G activity
 - Given supplemental blue light, plants grown under red LEDs similar to those under broad-spectrum sources

Spectral distribution of light (300-1100nm) from lamp sources in salad crop experiments at KSC

Spectral scans (300-1100nm) of light sources

canopy with a spectroradiometer. Total PPF was approximately 250 μ mol·m⁻²·s⁻¹ for all light sources.

Spectral Characteristics of Lighting Sources

Lamp									
Characteristic	μWave	CWF	HPS	660	670	680	690	700	725
			(µmol•m	-2•s-1)				
300-400	1	5	1	. 0	Ó	0	0	0	0
400-500	66	54	16	22	22	22	21	23	25
500-600	113	130	129	1	1	1	1	2	2
600-700	72	66	106	227	227	230	228	130	18
700-800	35	7	28	1	3	11	47	188	319
800-900	16	4	100	0	0	0	0	31	0
900-1000	11	2	9	0	0	0	0	13	18
1000-1100	11	5	14	0	0	0	0	0	0
Photon flux (300-1100)	324	272	401	251	253	264	296	378	413
PPF (400-700)	250	250	250	250	250	253	249	154	45
YPF	209	218	229	225	221	212	196	150	82
Blue	66	54	16	22	22	22	21	23	25
R	72	66	106	227	227	230	228	130	18
FR	28	4	15	1	2	7	30	94	160

<u>690 + 470 nm 700 + 470 nm</u>

Spinach at 26 dap under different lamp banks

Experimental Details

- Lighting treatments located in 3 Conviron PGW-36 chambers
- 16 (spinach) 18 (lettuce, radish) hour light photoperiod
- Instantaneous irradiance 250 μmol•m⁻²•s⁻¹ PAR
- Daily average irradiance 14-16 mol•m⁻²•day⁻¹
- Distance lamp bank to root-shoot barrier: 25 cm
- Plant Trays: 52 cm W x 59 cm L x 10 cm H
- Root-shoot barrier: 52 cm W x 59 cm L (Growth area: 0.3 m²)
- Harvest 6 plants at 14, 21, and 28 DAP

Spectral Photon Flux (µmol m⁻² s⁻¹ nm⁻¹)

Wavelength (nm)

Charac te risti c	CW F	H PS	(560	670	680	690
300-400	5	1		0	0	0	0
400-500	54	16	,	22	22	22	21
500-600	130	129		1	1	1	1
600-700	66	106	2	27	227	230	228
700-800	7	28		1	3	11	47
800-900	4	100		0	0	0	0
900-1000	2	9		0	0	0	0
1000-1100	5	14		0	0	0	0
Photon flux (300-1100)	272	401	2	51	253	264	296
PP F (4 00-700)	250	250	2	50	250	253	249
Y PF	218	229	2	25	221	212	196
B lu e	54	16	,	22	22	22	21
R	66	106	2	27	227	230	228
F R	4	15		1	2	7	30
PSS	0.84	0.85		0.88	0.87	0.84	0.76

Shoot and root dry mass yield of "Waldmann's Green" lettuce at 28 DAP.

Different letters above bars indicate significant difference based on ANOVA and Tukey's HSD mean procedure test (P<0.05).

Leaf area index (LAI), net assimilation rates, and crop growth rates of "Waldmann's Green" lettuce plants over 28 day crop cycles in the presence of LED, CWF, or HPS lighting *(see appendices for curve fit functions).*

Water use efficiency (WUE), transpiration, and carbon exchange rates of 28 dayold "Waldmann's Green lettuce plants grown in the presence of LED, CWF, or HPS lighting. Different letters above bars indicate significant difference based on ANOVA and Tukey's HSD mean procedure test (P<0.05)

Spectral Characteristics Comparison

Spinach Leaf Measurements

grown under various lighting sources for 28 days.

Spinach edible biomass and net leaf photosynthesis

Edible fresh biomass (leaves + stems) for spinach plants grown 28 days under various lighting sources.

Net rate of leaf photosynthesis for spinach plants (21 DAP) grown under various lighting sources (error bars indicated standard deviation of the treatment mean).

Summary

- Successfully implemented 8 separate light treatments
- Completed spinach growth experiments
- Given equal PAR (with 660-690 nm red LEDs) biomass yields similar
- Shoot diameter tends to increase with red LED wavelength, especially beyond 690 nm
- Many measurements yet to be complete
 - Plant physiological assays
 - Lamp bank electrical power consumption

Supplemental Lighting Strategy for Greenhouse Strawberry Production

Joshua S. Gottdenker – Graduate Student Gene A. Giacomelli – Professor Bioresource Engineering Rutgers University Cook College New Jersey USA

Objectives

• To test the effects of different Daily Light Integrals (DLIs)

- To compare the treatment effects:
 - Productivity (grams of fresh fruit / plant)
 - Economically = (\$ / plant)
 - Value of Supplemental Light (SL)

Cultural Practices (cont.)

 Conditioned plug plants are transplanted into the greenhouse. (September 1, 1999)

Incandescent Lamps

HPS Lamps

Measured Daily Light Integral

Light VS. Fruit Weight 10/29 - 1/23

CO₂ AND MARS GREENHOUSES

Raymond M. Wheeler NASA Biomedical Office Kennedy Space Center

• Why worry about CO₂ for Mars Greenhouses?

⇒ CO₂ is required for plant photosynthesis
 ⇒ CO₂ affects stomatal opening and transpiration
 ⇒ CO₂ can affect respiration
 ⇒ CO₂ is available from the Martian atmosphere and could serve as a pressurizing gas

- Plant Responses to CO₂:
 - Photosynthesis increases with increased CO₂*

 $CO_2 + H_2O \qquad CH_2O + O_2$

- Transpiration decreases with increased
 CO₂* Stomata Close and Water Use
 Drops
- Respiration decreases with increased CO₂*
- * Typical responses as CO_2 is increased from 0.04 kPa to 0.10 kPa

Composition of Mars Atmosphere*

Gas	Percent	~Pressure **		
	(%)	(kPa)		
CO_2	95.3	0.67		
N_2	2.7	0.019		
Ar	1.6	0.011		
O_2	0.13	0.0009		
CO	0.07	0.0004		
H_2O	0.03	0.0002		

*Owen et al. 1977. J. Geophys. Res.28:4635-4639. ** Assuming a total pressure of 0.7 kPa

Potatoes

Sweetpotatoes

CO₂ Injury to Leaves

Radish

Radish

